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Executive Summary 

Agricultural water use currently accounts for as much as 70 percent of total water use.  Couple 
this with an expected 50 percent increase in global water resource demand in the next 40 years and a 
potential shift in rainfall patterns associated with climate change; one can begin to see the major 
challenges ahead for the current generations.  Predicting the future agricultural water demands patterns 
is essential to ensure a sustainable world for a growing human population.  We developed a crop water 
demand simulation process incorporating the CERES-Maize model in the Decisions Support System for 
Agrotechnology Transfer (DSSAT) Cropping System Model (CSM) program, version 4.0, the MATrix 
LABoratory program (MATLAB), and regional comprehensive datasets including the NASA 
Agroclimatology Archive, the International Soil Reference and Information Centre (ISRIC) World 
Inventory of Soil Emission Potentials (WISE) soils database, the Center for Sustainability and the Global 
Environment (SAGE) Harvest Area and Yields of 175 crops and Crop Calendar database, and the United 
States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS). 

Phase 1 of the project involved a preliminary a calibration of the CERES-Maize model to the 
largest corn production regions in the U.S., USDA Economic Research Service (ERS) Region 1, also known 
as the Heartland Region.  The calibration procedure exhibited relative success at modeling at the 
regional scale, obtaining a R2 value of 0.8.  However, the results were not replicated in the validation 
step, producing a R2 value of 0.07 

In addition, global evapotranspiration was estimated for the entire globe.  The process began by 
obtain water use efficiencies (WUE) from the current scientific literature.  The WUE values were then 
applied to global corn yields to calculate the evapotranspiration of corn.  Finally, based on the equation 
Q = P – ET – RO, blue and green water was calculated for the globe.  The areas where ET was greater 
than the difference between precipitation and runoff were designated blue water areas, while the areas 
where ET was less than the difference were designated as green water areas.   

Given the poor predictive ability of the model produced during Phase 1, the calibration strategy 
was revised for the regional crop modeling procedure.  Maize production ERS region 1 was re-evaluated 
during Phase 2 and a temporal dimension was added to the process.  Phase 2 focused on derived a grid 
specific definition of maize genetic coefficients to act as predictor of maize yields.  A preliminary 
sensitivity analysis was conducted to determine the optimal starting ranges for calibration process.  
Coding for the calibration procedure is currently underway and new results are expected soon. 
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1. Introduction 

Global water resource demand is expected to increase by as much as 50 percent in the next 40 years 
as the human population reaches nine billion. Agricultural water use currently accounts for as much as 
70 percent of total water use. Increasing demand for food, feed, fiber and fuel will increase demand for 
irrigation water and put greater pressure on an already stressed resource.  In addition, global climate 
change will shift rainfall patterns, compounding water stress in certain regions. Predicting future 
cropping patterns is essential to ensure a sustainable world for a growing human population.   

The goal of this project was to develop a crop water demand simulation process incorporating the 
CERES-Maize model in the Decisions Support System for Agrotechnology Transfer (DSSAT) Cropping 
System Model (CSM) program, version 4.0 (Jones & Kiniry, 1986; Jones, et al., 2003; Hoogenboom, et al., 
2004).  The CERES-Maize model, part of DSSAT, was chosen for the study as it represents one of the 
most tested and widely used crop simulation models available.  The model simulates six corn 
phenological stages and the resulting biomass production, and grain yield using site specific input data.   
Final yield is determined by soil, weather, and management characteristics such as fertilizer application, 
irrigation, planting and harvesting date, plant poplulation, and others. The goal of this project was to 
simulate global corn yield based on a range of input parameters at the highest geospatial resolution 
supported by the data.   A customized user-interface in the MATrix LABoratory program (MATLAB) was 
created to allow for the input of global datasets within DSSAT.   

2. Phase 1  

 The first phase of the project involved a preliminary a calibration of the CERES-Maize model to 
the largest corn production regions in the U.S., the United States Department of Agriculture’s (USDA) 
Economic Research Service (ERS) Region 1, also known as the Heartland Region (Figure 1).  The 
Heartland Region represents not only the most production cropping regions in the U.S., but is one of the 
major producers of corn in the world.  Cropping practices within the region are well established and 
documented. 
 

 
Figure 1.  USDA’s ERS Region 1.  Located between 36.042°N to 46.625°N and 99.292°W to 82.125°W. 
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The objectives of this Phase 1 were (i) to develop a robust methodology for calibrating pre-
established cultivar definitions in DSSAT for the CERES-Maize crop model from publically available global 
datasets, (ii) to evaluate the performance of the model at the regional scale under non-limiting N 
conditions, and (iii) to predict irrigation demands for the region in question, and (iv) estimate blue vs. 
green distribution on a global scale. 

 

2.1. Regional Corn Yield Modeling 

2.1.1. Methods 

2.1.1.1. Study Area 
Phase 1 covered maize production in the USDA Economic Research Service (ERS) U.S. Farm Resource 

Region 1 (36.042°N to 46.625°N and 99.292°W to 82.125°W) also known as the Heartland Region 2000 
and 2005.   The ERS regions depict geographic specialization in production of U.S. farm commodities and 
are derived from four major sources including the older farm production region classifications, a cluster 
analysis of U.S. farm characteristics (Sommer & Hines, 1991), the USDA Land Resource Region, and the 
National Agricultural Statistics Service (NASS) Crop Reporting Districts. The region is comprised of 
roughly 550 counties in nine states. The Heartland region was chosen as it represents not only one of 
the largest areas of maize production regions in the U.S., but the entire world.  

2.1.1.2.  Weather Inputs 
Weather inputs were obtained from the NASA Agroclimatology Archive, one component of NASA’s 

POWER (Prediction of Worldwide Energy Resource) project.  POWER was created to allow access to data 
derived from NASA’s Surface Meteorological and Solar Energy (SSE) project for those interested in the 
design of renewable energy systems. The Agroclimatology archive was developed with agricultural 
Decision Supports Systems (DSS) in mind and provides easy download of historical data for specific site 
locations.  The parameters contained in this dataset are based upon solar radiation derived from 
satellite observations and meteorological data from the Goddard Earth Observing System assimilation 
model.  The archive is globally comprehensive at 1° resolution dating back to July 1983 to near present 
time.  Parameters  selected from the this archive include daily estimates of insolation on a horizontal 
surface (MJ/m2), daily mean, maximum, and minimum temperatures at 2m above ground surface (°C), 
and precipitation (mm).  

2.1.1.3. Soil Inputs 
Soil inputs were obtained from the International Soil Reference and Information Centre (ISRIC) 

World Inventory of Soil Emission Potentials (WISE) soils database.  The WISE database is a globally 
comprehensive dataset at one of the highest resolutions available at a 5 min resolution.   The data were 
created using the FAO-Unesco Soil Map of the World (DSMW) and soil parameter estimates derived 
from ISRIC’s global WISE soil profile database (Batjes, 2006).  The WISE database contains 1125 globally 
distributed soil profiles that are georeferenced and classified according to the FAO system.  Soil profiles 
were assigned to the FAO classification within the ERS region.  

2.1.1.4. Management Inputs 
Corn yield values were obtained from the Center for Sustainability and the Global Environment 

(SAGE) Harvest Area and Yields of 175 crops database (Monfreda, Ramankutty, & Foley, 2008).  The 
dataset is represents a high resolution, 5 min, and is globally comprehensive (Figure 3).   Planting and 
harvesting dates were obtained from SAGE’s Crop Calendar Dataset was used to determine planting and 
harvesting dates.  The dataset was complied by digitizing and georeferencing existing observations of 
cropping systems in a gridded database (Sacks, Deryng, Foley, & Ramankutty, 2010). 
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Figure 3.  2000 SAGE corn yield data.  The data covers the globe at a 5 min resolution. 

2.1.1.5. Data Processing and ERS Region 1 Calibration 
A customized Matlab user-interface was developed to facilitate the regional modeling process.  The 

MATLAB interface was designed to format large geospatial data files into input files for use in DSSAT.  

 

Figure 2.  ISRIC-WISE soil distribution through ERS Region 1.  WISE soil profiles have to added to 
FAO-Unesco Soil Map of the World at 5min resolution. 
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The DSSAT-CERES Model was executed from within the MATLAB interface, and the outputs were 
exported into MATLAB for post-processing. 
 The calibration process involved selecting nine cultivar varieties that are common to the region 
a fitting the best cultivar to each pixel in the ERS Region 1 using an optimization function. To begin, the 
NASA POWER data were sub-sampled to a 5 min resolution to allow for homogeneity in spatial scale 
during the calibration process.  The region contained 11,357 grids in total. Once all input data were set 
to a common spatial scale, one of the nine pre-selected cultivars (Table 1) were selected using am 
optimization function.  The function of the optimization function was to select the cultivar that 
produced a yield that was closest to the actual yield for each grid cell.   
 
Table 1.  Nine pre-selected cultivars and their subsequent physiological genetic information used in the 
calibration process 

Cultivar  P1  P2  P5  G2  G3  PHINT  

H. OBREGON  360  0.8  685  908  10  38.9  

H6  310  0.3  685  908  10  38.9  

PIO 3147  255  0.76  685  908  10  38.9  

A632xVA26  240  0.3  685  908  10  38.9  

B14xC103  180  0.5  685  908  10  38.9  

DeKalb XL45  150  0.4  685  908  10  38.9  

F16xF19  165  0.3  685  908  10  38.9  

F478xW705A  140  0.3  685  908  10  38.9  

CP170  120  0.3  685  908  10  38.9  

 

2.1.1.6. Model Validation 
Using the best fit cultivars selected during the calibration step, validation of the model involved 

applying the geospatial cultivar definitions to the same input data for 2005, with the exception of SAGE 
yield data.  Considering the SAGE yield dataset only contained information for 2000,  the USDA’s 
National Agricultural Statistics Service (NASS) county level were used for the validation process.  The 
coefficient of determination for validation and the Nash-Sutcliffe Coefficient were used to evaluate the 
predictive ability of the model. 

2.1.2. Results 

2.1.2.1. Calibration 
The distribution of the selected cultivars and a percent error plot of the predicted yield compared to 

the observed yield can be found in Figures 4 and 5.  Figure 6 shows the absolute value of the model 
error for each pixel.  The R2 value for the results of the calibration run was 0.7169.  The Nash-Sutcliffe 
coefficient (E) was 0.67, suggesting that calibration was reasonable.  
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Figure 4. Optimized distribution of cultivars through ERS Region 1. 
 

 

Figure 5.  Predicted vs. observed graph for yield calibration data. 
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Figure 6.  Map of the percent error within the ERS Heartland Region. 

2.1.2.2. Validation 
Validation results for ERS Heartland Region indicated additional challenges for calibration. The 

predicted vs. observed yield from 2005 (Figure 7) show the wide range of predictions.  The geospatial 
distribution of simulation error (percent) suggests a clustering of over and under-estimates (Figure 8).  
The coefficient of determination for validation was 0.0763, and Nash-Sutcliffe Coefficient was -0.33.   
 

 

Figure 7. Predicted vs. observed graph for yield validation data. 
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Figure 8.   Percent errors for validation run. 

2.1.3. Discussion 
The calibration procedure exhibited relative success at modeling at the regional scale.  The line of 

best fit for the system had a slope of 0.8 and a y-intercept value of 1,634, suggesting the model was 
over-predicting yields at  the lower end of the observed yield range and under-predicting toward the 
higher end.  The over-prediction of low yield pixel could be a result of low agricultural land use in these 
pixels.  The underlying assumption of regional modeling using a grid-based approach is that each grid 
represents a homogenous set of inputs. Thus, yield is assumed to be uniform over the pixel. If a 
particular pixel exhibits a high percentage of an alternative land use, other than agricultural, overall 
yields will be lowered for the pixel.  A lower yielding cultivar would then be selected under the current 
process.  One explanation for the over-prediction is the nine pre-selected cultivars represent varieties 
that are too high yielding. More testing is needed to characterize the source of this error. 

While a high R2 values were obtained from the calibration run, these results were not replicated in 
the validation step.  The validation run produced a R2 value of 0.07 and a Nash-Sutcliffe Coefficient of -
0.33.  In other words, the models residual variance was larger than the data variance.   The low 
predictive ability of the model can likely be attributed to a lack of temporal resolution during the 
calibration process.  Calibrating maize cultivars to one year of yield data proved insufficient to act a 
predictive model. 

2.2. Blue vs. Green Water Estimation 
In addition to the development of the CERES-Maize model, the integration of yield-derived 

evapotranspiration data with precipitation and basin-level runoff data as a method to classify blue and 
green water areas was explored.   

2.2.1. Water Use Efficiency 
Vegetative water use refers the quantity of water used for metabolic growth and production and 

can be described as the amount of water needed to meet the water loss through evapotranspiration. 
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Water use efficiency (WUE) can be defined as the ratio of crop yield (Y) to water loss through 
evapotranspiration (ET) (Al-Kaisi & Yin, 2003; Tijani, et al., 2008; Howell, et al., 1998): 

 

    
 

  
        [1] 

 
Published WUE values (kg ha-1 mm-1) were obtained and assigned to four different yield intensities: low, 
medium, high, and very high. Al-Kaisi and Yin (2003) established WUE values for three different plant 
population densities of 57,000 (plants ha-1), 69,000 (plants ha-1), and 81,000 (plants ha-1) for the years 
1998-2000. Howell et al. (1998) obtained WUE values for both short season and full-season cultivars in 
Bushland, Texas.  The short season cultivar (Pioneer 3737) had a WUE of 15.2 kg ha-1 mm-1 for a grain 
yield of 1.132 kg m-2 and the full-season cultivar (Pioneer 3245) had a WUE of 15.7 kg ha-1 mm-1 for a 
grain yield of 1.43 kg m-2. In 2007, Tijani et al. studied maize water use efficiency for multiple fallow 
treatments in Nigeria and found that native fallow under fertilizer application resulted in the largest 
WUE (16 kg ha-1 mm-1) while native fallow without fertilization had the smallest (10 kg ha-1 mm-1).  
Similarly, Grassini et al. (2009) analyzed maize productivity for both fully irrigated and rainfed conditions 
in the Western U.S. Corn-Belt and obtained a WUE value of 37 kg ha-1 mm-1, the representing our largest 
yield intensity WUE. A summary of the combined published WUE values as well as the values assigned to 
each of the four yield intensity categories are shown in Table 2 below. 
 
Table 2. Water use efficiency (WUE) values published for various management regimes for maize 
production. 

WUE 
(kg ha-1 mm-1) 

Descriptor Source 

10.97 

57,000 plants ha-1 

Al-Kaisi & Yin (2003) 

13.89 

12.93 

12.18 

69,000 plants ha-1 15 

14.61 

13.57 

81,000 plants ha-1 14.76 

14.36 

16.33 Fertilized Native furrow 

Tijani et al. (2008) 
9.98 

Non-fertilized Native 
furrow 

37 Irrigated Grassini et al. (2009) 

15.2 
Short Season 
(Pioneer 3737) 

Howell et al. (1988) 

15.7 
Full-Season 
(Pioneer 3245) 

Low=10 kg ha-1 mm-1 Medium=15 kg ha-1 mm-1 High=25 kg ha-1 mm-1 Very High=35 kg ha-1 mm-1 
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2.2.2. Estimating Corn Evapotranspiration 
Using 5 arc-minute actual global corn yield data obtained from SAGE (Ramankutty, Olejniczak, & 

Foley, 2000) we hypothesized that estimated evapotranspiration (mm) of corn could be obtained by 
taking the ratio of corn yield (CY) (kg ha-1) to WUE (kg ha-1 mm-1). 

 

    
  

   
        [2] 

 
The globe was gridded into 5 arc-minute pixels and using ArcGis the corn yield was divided by an 
assigned WUE value which resulted in the estimated ETC for each area. For pixels with yields less than 5 
T ha-1, 5 to 10 T ha-1, 10 to 15 T ha-1, and greater than 15 T ha-1, WUE respective values of 10, 15, 25, and 
35 kg ha-1 mm-1 will be used (Table 3). 
 

Table 3. Assigned WUE values per corn yield. 

Corn Yield Range 
(T ha-1) 

WUE value assigned 
(kg ha-1 mm-1) 

< 5 10 
5 to 10 15 
10 to 15 25 
> 15 35 

 
The global estimated ETC is shown in Figure 9 below. Approximate evapotranspiration for corn 

over the entire growing period is between 500 and 800 mm (Brouwer & Heibloem, 1986). The estimated 
ETc for corn using the WUE method is between 0 and 667 mm with the densest corn production areas 
corresponding to 450 to 667 mm which seems like a good estimate based on typical corn ET values. 

 

 
Figure 9.  Yield based evapotranspiration of corn for the globe. 
 



Page | 11  
 

 
Precipitation data was summed for each pixel for the appropriate growing season.  Monthly 

basin-level runoff data, provided by the University of New Hampshire’s Global Runoff Data Centre 
(GRDC), was summed by growing season.  Based on the equation Q = P – ET – RO, where P = 
precipitation and RO = runoff, the total runoff was subtracted from the total precipitation.  The areas 
where ET was greater than the difference between precipitation and runoff were designated blue water 
areas, while the areas where ET was less than the difference were designated as green water areas.  
Figure 8 shows the map of the blue and green water. 
 

 
 
Figure 10. Yield-derived global blue vs green water map. 

3. Phase 2 

Given the poor predictive ability of the model produced during Phase 1, the calibration strategy was 
revised for the regional crop modeling procedure.  Maize production ERS region 1 was re-evaluated 
during Phase 2 and a temporal dimension was added to the process.  The CERES-Maize model was also 
given another look to help devise a new calibration strategy.  

The objectives of this study were (i) to develop a robust methodology for calibrating cultivar 
coefficients for the CERES-Maize crop model from the most basic of production information, i.e. yield, to 
a high resolution gridded dataset, (ii) to evaluate the performance of the model at the regional scale 
under non-limiting N conditions, and (iii) to predict irrigation demands for the region in question.  This 
study is the initial phase of a project to calibrate and evaluate the CERES-Maize crop model for use in 
determining the future impacts of increased water use efficiency under climate change scenarios. 

3.1. Background 
The CERES-Maize crop model is a dynamic simulation model that operates on a daily time step 

to predict crop growth at the plot-scale.   However, policy and agricultural recommendations are rarely 
implemented at the plot-scale.  In response to this demand, crop models, such as CERES-Maize, have 
been adapted to national and regional scales to aid policy makers with agricultural decisions concerning 
at variety of issues.  Areas of interest include maize production in response to climate change 
(Southworth, et al., 2000; Jones & Thornton, 2003; Xiong, Matthews, Holman, Lin, & Xu, 2007), global 
food security (Parry, Rosenzweig, Iglesias, Fischer, & Livermore, 1999), and within season of corn yield 
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(Quiring & Legates 2008). While the CERES-Maize model has been extensively tested and validated at 
the regional scale, several challenges remain when crop modeling scales larger than the farm. 

Difficulties arise for any model is applied scale for which it was not designed. Models such as the 
CERES-Maize are designed to simulate crop growth, soil-plant-atmosphere interactions, and nutrient 
dynamics at a point in space over time.  Each point, in this case representing a corn stalk, is then 
distributed over the designated plot area based on management inputs such as planting density and row 
spacing.   After the growth cycle, outputs such as yield, irrigation, and evapotranspiration are considered 
uniform across the plot.  This approach works well at the plot-scale as the assumption of homogeneity 
of input parameters typically holds true across the plot.  Unfortunately, the same cannot be said about 
input parameters at the regional scale. Thus, the introduction of errors becomes an inherent 
consequence of the regional modeling process, forcing the modeler to dance with making 
generalizations necessary for the regional modeling and minimizing error.  

With the advancements of GIS-based systems over the past decade, it has become possible to 
improve input parameter definition at the regional scale through the use of geospatially explicit data 
bases.  The CERES-Maize model depends heavily on defining soil-plant-atmosphere interactions.  As a 
result, soil and climatic inputs must be defined at a high resolution to minimize error.  One such 
database used to characterize region specific soils is the ISRIC-WISE dataset (Batjes, 2006).  Coupled with 
a gridded datset of past and present weather condition, such as the NASA Prediction of Worldwide 
Energy Resource) POWER Agroclimitololgy archive (NASA POWER Team, 2010), it becomes possible to 
simulate and evalute the accuracy of simulated yields.  While, soils and climate can be applied to the 
regional with a high level of certaintiy, information concerning management practices are less 
obtainable. 

Comperhensive regional datasets contiaining information describing region specific 
management applications are pracitically non-existant.  Information on planting and harvesting dates 
can found from such sources ans USDA National Agriculutral Statistics Service or the SAGE Crop Calandar 
Dataset (Sacks, Deryng, Foley, & Ramankutty, 2010).  However, defining cultivar(s) for a specific region is 
muc h more complex.  Typical approaches addressing the issue of maize vareties include either assigning 
a regional common and pervioulsy defined vareity to represent the mixture cultivars in the region (Ines, 
Gupta, & Loof, 2002; Guo, Lin, Mo, & Yang, 2010) or deriving new cultivar definitions from crop vareity 
trials and applying these values to the region (Quiring & Legates, 2008; Yang, Wilkerson, Buol, Bowman, 
& Heiniger, 2010).  In either case, one or a few cutlivar defintions are used to represent a large area 
which potentially contains many sets of cultivars, introducing error.  

The inherent error associated with using one or a few varieties to represent an entire region 
offers the potential for improvement.  When modeling on a high resolution grid, each grid begins to 
exemplify a field unit.  It is to this author’s knowledge that no attempts have been made at calibrating 
the CERES-Maize model on grid by grid basis.   

3.2. Methods 

3.2.1. Study Area 
This study covered maize production in the USDA Economic Research Service (ERS) U.S. Farm 

Resource Region 1 (36.042°N to 46.625°N and 99.292°W to 82.125°W) also known as the Heartland 
Region from 1997-2007.   The ERS regions depict geographic specialization in production of U.S. farm 
commodities and are derived from four major sources including the older farm production region 
classifications, a cluster analysis of U.S. farm characteristics (Sommer & Hines, 1991), the USDA Land 
Resource Region, and the National Agricultural Statistics Service (NASS) Crop Reporting Districts. The 
region is comprised of roughly 550 counties in nine states. The Heartland region was chosen as it 
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represents not only one of the largest areas of maize production regions in the U.S., but the entire 
world.  

3.2.2. Weather Inputs 
Weather inputs were obtained from the NASA Agroclimatology Archive, one component of NASA’s 

POWER (Prediction of Worldwide Energy Resource) project.  POWER was created to allow access to data 
derived from NASA’s Surface Meteorological and Solar Energy (SSE) project for those interested in the 
design of renewable energy systems. The Agroclimatology archive was developed with agricultural 
Decision Supports Systems (DSS) in mind and provides easy download of historical data for specific site 
locations.  The parameters contained in this dataset are based upon solar radiation derived from 
satellite observations and meteorological data from the Goddard Earth Observing System assimilation 
model.  The archive is globally comprehensive at 1° resolution dating back to July 1983 to near present 
time.  Parameters  selected from the this archive include daily estimates of insolation on a horizontal 
surface (MJ/m2), daily mean, maximum, and minimum temperatures at 2m above ground surface (°C), 
and precipitation (mm).  

3.2.3.  Soil Inputs 
Soil inputs were obtained from the International Soil Reference and Information Centre (ISRIC) 

World Inventory of Soil Emission Potentials (WISE) soils database.  The WISE database is a globally 
comprehensive dataset at one of the highest resolutions available at a 5’ X 5’ resolution.   The data were 
created using the FAO-UNESCO Soil Map of the World (DSMW) and soil parameter estimates derived 
from ISRIC’s global WISE soil profile database (Batjes, 2006).  The WISE database contains 1125 globally 
distributed soil profiles that are georeferenced and classified according to the FAO system.  Soil profiles 
were assigned to the FAO classification within the ERS region.  

3.2.4. Management Inputs  
The Center for Sustainability and the Global Environment’s (SAGE) Crop Calendar Dataset was used 

to determine planting and harvesting dates.  The dataset was complied by digitizing and georeferencing 
existing observations of cropping systems in a gridded database (Sacks, Deryng, Foley, & Ramankutty, 
2010).  In order to facilitate the ease of the modeling process, a region average for both mean planting 
and harvesting dates was used. Inputs such as seeding density, seeding depth, and row spacing were set 
to regional common values (Table 4). 

 
Table 4. Management parameter used for the CERES-Maize simulations. 

Model Parameter Value 

Row spacing (cm) 85 

Seeding density (plants/cm) 7.2 

Seeding depth (cm) 4 

Planting date May 12 

Harvesting date October 22 

 

3.2.5. Historical Yields 
Historical county-average maize yields were obtained between the years 1997-2007 for the counties 

of ERS region 1 from USDA’s National Agricultural Statistics Service (NASS) dataset.   In their current 
state, the data is not capable of being used for a grid base regional analysis and as such, need to be 
gridded.  To achieve this goal, each county yield value was georeferenced to its corresponding county 
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polygon in ArcGIS.  Yields were then calculated for each pixel on a 5’ X 5’ grid using an area weighting 
approach.  The process involved using equation [3]; 

 

     ∑     
 
   (

    

  
)       [3] 

   
where      is equal to the cell grid yield in year n,      is the reported NASS county yield that overlaps 

grid cell i,    is the area of the county, and      is the fraction of the grid cell  i that falls within county 
polygon. The newly created grid base yield polygons were then converted to yearly raster for the 
modeling process.  

3.2.6. Genetic Coefficient Estimation 
CERES-Maize uses six genetic coefficients to simulate a maize plant’s response to both photoperiod 

and temperature (Table 5).  This study focused on deriving a genetic coefficient profile for each pixel to 
describe all potential cultivars with the pixel area. To accomplish this task, each coefficient was 
optimized in a step-like fashion, being with P1 and ending with G3.  The Root Mean Squared Error 
(RSME) was used to determine the coefficient associated with the least amount of error in yield 
estimation [4]; 

      √
 

 
∑ (     )

  
         [4] 

where n is equal to the number of years with a non-zero yield value for the grid cell,    is the simulated 
yield and    is the area weighted average NASS yield.  

 
 
Table 5. CERES-Maize genetic coefficient definitions. 
Symbol Description Lower limit Upper limit Interval size 

P1  Thermal time from seedling emergence to the end of the 
juvenile phase (expressed in degree days above a base 
temperature of 8°C) during which the plant is not responsive 
to changes in photoperiod. 

150 300 10 

P2 Extent to which development (expressed as days) is delayed 
for each hour increase in photoperiod above the longest 
photoperiod at which development proceeds at a maximum 
rate (which is considered to be 12.5 hours). 

0.45 0.45 0 

P5 Thermal time from silking to physiological maturity 
(expressed in degree days above a base temperature of 8°C). 

600 1000 10 

G2 Maximum possible number of kernels per plant. 450 1000 50 

G3 Kernel filling rate during the linear grain filling stage and 
under optimum conditions (mg/day). 

5 12 0.5 

PHINT Phylochron interval; the interval in thermal time (degree 
days) between successive leaf tip appearances. 

38.9 38.9 0 

 

3.2.7. Validation 
In order evaluate the performance of the model resulting model, the derived genetic coefficients 

were used to simulate yields for the year 2007, using the RSME as the evaluation criteria.  The RSME was 
applied to each grid cell.   
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3.3. Sensitivity Analysis 
In order to reduce the potential number of simulations, a sensitivity analysis was conducted for each 

of the genetic coefficients with the exception of P2 and PHINT, which were held constant, to determine 
the optimal range for each coefficient for the calibration stage.  Yang, Wilkerson, Buol, Bowman, & 
Heiniger (2010) found that P2 was constant with respect to yield below 0.39 and above 0.50, concluding 
a median value of 0.45 was sufficient to achieve yields in the middle of the variability range.   PHINT was 
also held constant in compliance with most other predetermined cultivars in DSSAT 4.0.  Using a broad 
set of ranges for each coefficient (see Table 2), the sensitivity analysis involved incremental changing 
one coefficient, while holding all other constant according to the mediums season variety, and running 
the CERES-Maize model. The resulting yield was plotted against the coefficient value for each 
coefficient. The analysis was run for 100 randomly selected pixels in ERS region 1. 
 Figures 11-14 show the results for each of the coefficient for a selected. Overall, all of the four 
coefficients show a universal positive trend within the ranges analyzed.  The results suggest no drastic 
sensitivity.  These could be a result of not extending the coefficient range enough during the analysis; 
however, more testing is needed.  

3.4. Discussion 
Coding for the calibration of the ERS region 1 is currently underway. More testing of the sensitivity 

of the inputs is needed to better define the genetic coefficients for the optimization process.  The 
resulting product should provide a sufficient definition of maize cropping in the Heartland Region.  Once 
a calibration procedure has been successfully validated, the process can be applied to future climate 
change scenarios.  

4. Conclusion 

The goal of this project was to evaluate the potential to integrate DSSAT into a global data 
framework for integrated crop production analysis.  The results clearly indicate this is possible.  The first 
objective of this phase was to develop a robust methodology for calibrating pre-established cultivar 
definitions in DSSAT for the CERES-Maize crop model from publically available global datasets.  That 
objective has been met.  The second objective was to evaluate the performance of the model at the 
regional scale under non-limiting N conditions.  That objective was also met.  The final objective was to 
predict irrigation demands for the region in question, and estimate blue vs. green distribution on a 
global scale.  This objective was completed with high effectiveness at the global scale and less than 
satisfactory resolution at the regional scale.  Regional data are more explicit so the biases of the model 
are more apparent at smaller scales.  The remaining challenge is to develop a geospatial water 
management data input process.  This work is ongoing under another program. 

A research team called HarvestChoice (http://harvestchoice.org/about/at_a_glance), supported by 
the Bill & Melinda Gates foundation, is non-profit organization that focuses on generating knowledge 
bases for strategic investment in improve the quality of life in poverty stricken sub-Saharan Africa and 
South Asia. This group has been engaged in similar studies that are trying to predict and optimize future 
cropping systems.  The next stage for this project is to link the model calibration and validation tools to 
Harvest Choice to provide a global set of tools for analyzing the impacts of environmental and economic 
pressures on global crop production. 
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Figure 11.   Simulated yield versus genetic coefficient P1 for the year 1999 (Top Left), simulated yield 
versus genetic coefficient P5 for the year 2001 (Top Right), simulated yield versus genetic coefficient G2 
for the year 1999 (Bottom Right), and simulated yield versus genetic coefficient G5 for the year 2001 
(Bottom Left). 
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